OREGON
 CUSD220
 Academics | Activities | Service | Leadership

From: Adam Larsen, Assistant Superintendent
To: Board of Education
Cc: Thomas Mahoney, Superintendent
Re: December 2021 Board Report

Student Achievement - Finding Comparable Schools

In November, we began exploring our student achievement levels based on the Illinois Assessment of Readiness and SAT. While student achievement usually falls near state averages, we often ask whether this is the expected level based on demographic characteristics. Our leadership team has also been interested in knowing if there are schools with similar demographics that perform the same or better than our schools.

Conducting this work requires a large dataset and some robust analysis, but finding comparable schools is possible and likely a useful exercise. The Illinois Report Card Data Library (https://www.isbe.net/Pages/Illinois-State-Report-Card-Data.aspx) offers the school-level data for every building in the state, including all of the characteristics of interest. The following is a summary of some internal analysis of the data. Each section will look at how the three OCUSD buildings compare to other buildings of similar composition and grade bands.

The following predictors were isolated and used to correlate with and predict English/Language Arts (ELA) and Math achievement outcomes:

- Student Enrollment
- Low Income Enrollment
- White Student Enrollment
- Children with Disabilities Enrollment
- English Learner Student Enrollment
- Homeless Student Enrollment
- Attendance Rate
- Instructional Expenditure per Pupil

Correlations

Anecdotally, the rate of low income student enrollment seems most predictive of student achievement. There are many reasons, including resources and time available at home, pre-school preparation, and resources and teacher quality within buildings. This plays out when studying the empirical data as well. The strongest correlations between any predictor and the two achievement outcome variables were for the percentage of free/reduced lunch students in a building. The correlations were strongly negative (higher free/reduced numbers correlates to lower achievement). This is particularly relevant in our district, where this number underwent a rapid increase during and following the Great Recession.

OREGON
 CUSD220
 Academics | Activities | Service | Leadership

High Schools:

	\% ELA Proficiency	\% Math Proficiency
\# Student Enrollment	0.412478	0.441141
\% Student Enrollment - Low Income	-0.714123	-0.681943
\% Student Enrollment - White	0.080113	0.038444
\% Student Enrollment - Children with Disabilities	-0.243426	-0.185472
\% Student Enrollment - EL	-0.609504	-0.561648
\% Student Enrollment - Homeless	-0.416838	-0.418511
Student Attendance Rate	0.469981	0.418484
\$ Instructional Expenditure per Pupil	0.114382	0.185015
\% ELA Proficiency	1.000000	0.931025
\% Math Proficiency	0.931025	1.000000

Junior High Schools:

	\% ELA Proficiency	\% Math Proficiency
\# Student Enrollment	0.045522	0.174456
\% Student Enrollment - Low Income	-0.716625	-0.767648
\% Student Enrollment - White	0.286602	0.172951
\% Student Enrollment - Children with Disabilities	-0.091563	-0.037429
\% Student Enrollment - EL	-0.468358	-0.436017
\% Student Enrollment - Homeless	-0.156475	-0.265780
Student Attendance Rate	0.396819	0.382702
\$ Instructional Expenditure per Pupil	0.150870	0.286428
\% ELA Proficiency	1.000000	0.871286
\% Math Proficiency	0.871286	1.000000

OREGON
 CUSD220
 Academics | Activities | Service | Leadership

Elementary Schools:

	\% ELA Proficiency	\% Math Proficiency
\# Student Enrollment	0.048934	0.057267
\% Student Enrollment - Low Income	-0.776767	-0.803804
\% Student Enrollment - White	0.411163	0.391927
\% Student Enrollment - Children with Disabilities	-0.141821	-0.139105
\% Student Enrollment - EL	-0.475038	-0.460999
\% Student Enrollment - Homeless	-0.165733	-0.186713
Student Attendance Rate	0.551610	0.533635
\$ Instructional Expenditure per Pupil	-0.094966	-0.070392
\% ELA Proficiency	1.000000	0.908093
\% Math Proficiency	0.908093	1.000000

All of these relationships were explored graphically as well through scatterplots, and the relationship between low income and achievement shows the strongest negative correlation of all of the predictors (elementary schools):

OREGON
 CUSD220
 Academics | Activities | Service | Leadership

Construction a Regression Model

While examining each factor individually is interesting, it isolates the relationships in a narrow fashion and fails to capture the predictive power of combining the factors into a single model. Using simple regression, and without computing interaction terms, a model was built for each school level for each outcome using the combination of all eight factors. Once those regression weights are fed back into the model, it is possible to compute predicted and actual outcomes. The result is a graph that compares where a school is expected to achieve versus where is actually does.

English/Language Arts and Math graphs are computed for each school level. Based on the trained model, if a school were to perform at expected level, its red dot would fall on the blue regression line. Over-achieving would be represented by a dot above the line, while over-achieving falls below the line.

Oregon High School (compared to all high schools):

DLR Junior High School (compared to all junior high schools):

OREGON
 CUSD220
 Academics | Activities | Service | Leadership

Oregon Elementary School (compared to all elementary schools):

All of the red dots fall below the regression lines, with the most significant under-achievement occurring in ELA at DLR Junior High and Oregon Elementary School. The greater the distance between the red dot and the blue regression, the greater the degree of under-achievement.

Comparison Schools

One clear path for identifying remediation is to identify similar schools whose achievement is above the regression line and try to understand what those schools are doing differently in order to have better outcomes. There are different procedures for identifying these similar schools. The approach taken here was to narrow the search down to schools with similar grade bands, with enrollment numbers within 20% and free/reduced numbers within 10% of the target school. Once those schools were isolated, they were further narrowed by standardizing the 8 predictors and computing an average distance between each comparison school and the target school, then choosing the nearest 20 schools. Any schools with poorer achievement than the target school were dropped. Finally, the schools were sorted by achievement level, with schools performing the best appearing at the top of the list.

The result is several lists of schools which have similar characteristics but are achieving higher than our three schools. Some notable schools which appear on multiple lists and/or are geographically near our location:

Oregon High School:

- El Paso-Gridley High School
- Forreston
- Eastland
- Seneca
- Paxton-Buckley-Loda High School

DLR Junior High School:

- Paxton-Buckley-Loda Jr High Sch
- Wilmington Middle School
- Reed-Custer Middle School
- Fieldcrest Middle School

OREGON
 CUSD220

Academics | Activities | Service | Leadership

Oregon Elementary School

- Saratoga Elementary School
- Churchill Elementary School
- Lincoln Elementary School (Palatine)

Next Steps

The next steps are less clear, but we will definitely rely on professional networks and opportunities to engage with building and district leaders at these identified schools. This will be a qualitative approach, trying to identify trends or themes that seem to be apparent at these buildings. While some obvious differences will emerge such as schools having slightly more time for math instruction or a different reading intervention program, our goal is to focus more on the long-term, systemic differences that exist between our approach and theirs. These might include the culture around student intervention, the nature and substance of teacher collaboration, and expectations for achievement at the building and district levels. We are excited to network with colleagues whose schools are most like ours to see what we can learn from them.

The complete school comparison analysis is attached.

Respectfully Submitted,

Adam P. Larsen
Assistant Superintendent
Oregon CUSD \#220

In []: import pandas as pd

In []: \# Read general tab with school and district characteristics

```
general = pd.read_excel("2021 Report Card Public Data Set v3.xlsx", sheet_name='General').set_index(['RCDTS'])
# Construct distrct (0000) RDCTS for each school
general['RCDTS_district'] = general.index.str[:11] + '0000'
```

In []: \# Read academic assessment tab
ela_math_science = pd.read_excel("2021 Report Card Public Data Set v3.xlsx", sheet_name='ELA Math Science').se
t_in̄dex(['RCDTS'])

In []: \# Read finance tab
finance = pd.read_excel("2021 Report Card Public Data Set v3.xlsx", sheet_name='Finance').set_index(['RCDTS'])
\# Filter $d f$ to districts since all of the information we want is at the district level
finance = finance[finance['Type'] == 'District']

```
In [ ]:
# Join academic information on index
df = general.join(ela_math_science, rsuffix='_ela_math_science')
# Merge financial information using the district RCDTS and the financial index
df = df.merge(finance, left_on=['RCDTS_district'], right_index=True, suffixes=('', '_Finance') )
# Drop columns that are duplicated from the academic and financial dfs
df.drop( df.filter(regex='_(ela_math_science|Finance)$').columns.tolist(), axis=1, inplace=True )
# Set the index to useful information about each school
df = df.reset index().set index([
    'RCDTS',
    School Name',
    District',
    'City',
    'County',
    'District Type',
    District Size'
        Grades Served'
])
df.head()
Out[ ]:
```



```
In [ ]: keep = [
    'Type',
    'School Type'
]
predictors = [
    '# Student Enrollment',
    '% Student Enrollment - Low Income',
    % Student Enrollment - White',
    '% Student Enrollment - Children with Disabilities',
    '% Student Enrollment - EL',
    '% Student Enrollment - Homeless',
    'Student Attendance Rate',
        '$ Instructional Expenditure per Pupil'
]
outcomes = [
    '% ELA Proficiency',
    '% Math Proficiency'
]
# Limit to the columns of interest
df = df[ keep + predictors + outcomes ]
df.head()
Out[ ]:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & Type & School Type & \# Student Enrollment & \% Student Enrollment - Low & \[
\begin{gathered}
\text { \% St } \\
\text { Enrol }
\end{gathered}
\] \\
\hline RCDTS & School Name & District & City & County & District Type & District Size & Grades Served & & & & & \\
\hline 010010010260000 & NaN & Payson CUSD 1 & Payson & Adams & UNIT & MEDIUM & \[
\begin{array}{r}
\text { PK K } 1 \\
2345 \\
6789 \\
1011 \\
\quad 12
\end{array}
\] & District & NaN & 504 & 42.7 & \\
\hline 010010010260001 & Seymour High School & Payson CUSD 1 & Payson & Adams & UNIT & MEDIUM & \[
\begin{array}{r}
789 \\
1011 \\
\quad 12
\end{array}
\] & School & \[
\begin{array}{r}
\text { HIGH } \\
\text { SCHOOL }
\end{array}
\] & 241 & 36.9 & \\
\hline 010010010262002 & Seymour Elementary School & Payson CUSD 1 & Payson & Adams & UNIT & MEDIUM & \[
\begin{array}{r}
\text { PK K } 1 \\
2345 \\
6
\end{array}
\] & School & ELEMENTARY & 263 & 47.9 & \\
\hline 010010020260000 & NaN & Liberty CUSD 2 & Liberty & Adams & UNIT & MEDIUM & \[
\begin{array}{r}
\text { PK K } 1 \\
2345 \\
6789 \\
1011 \\
\quad 12
\end{array}
\] & District & NaN & 625 & 25.3 & \\
\hline 010010020260001 & Liberty High School & Liberty CUSD 2 & Liberty & Adams & UNIT & MEDIUM & \[
\begin{array}{r}
789 \\
1011 \\
\quad 12
\end{array}
\] & School & \[
\begin{array}{r}
\text { HIGH } \\
\text { SCHOOL }
\end{array}
\] & 270 & 22.2 & \\
\hline 4 & & & & & & & & & & & & - \\
\hline \begin{tabular}{l}
\# Build our lis \\
schools = df[ \\
index \\
schools
\end{tabular} & t of schoo df.index. & \begin{tabular}{l}
Ls \\
t_leve
\end{tabular} & l_value & \[
s(' R C D T
\] & \[
\left.S^{\prime}\right) . \text { str. }
\] & .startsw & ith('47 & \[
071220
\] & \[
026 \text { ')) \& (df }
\] & ['Type'] & 'School & ]. \\
\hline MultiIndex(['4
('4
name
ades Served']) & \[
\begin{aligned}
& 7071220026 \\
& 7071220026 \\
& 7071220026 \\
& s=[\text { ' RCDTS ' }
\end{aligned}
\] & \begin{tabular}{l}
0001', \\
1001', \\
2006', \\
, 'Scho
\end{tabular} & \begin{tabular}{l}
'David \\
ol Name
\end{tabular} & \begin{tabular}{l}
'Oreg \\
L Rahn \\
', 'Dis
\end{tabular} & on High Jr High regon El trict', & \begin{tabular}{l}
School' \\
School' \\
lem Sch' \\
'City',
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& \ldots .), \\
& \ldots .(), \\
& \ldots .)
\end{aligned}
\] \\
Count
\end{tabular} &  & strict Typ & 'Distri & t Size', & \\
\hline
\end{tabular}
```

In []: \# Show columns of interest for our schools of interest df.loc[schools]

Out []:

								Type	School Type	\# Student Enrollment	\% Student Enrollment - White	\% Stude Enrollme - Childr wi
RCDTS	School Name	District	City	County	District Type	District Size	Grades Served					
470712200260001	Oregon High School	Oregon CUSD 220	Oregon	Ogle	UNIT	MEDIUM	$\begin{array}{r} 91011 \\ 12 \end{array}$	School	$\begin{array}{r} \text { HIGH } \\ \text { SCHOOL } \end{array}$	406	84.7	14
470712200261001	David L Rahn Jr High School	Oregon CUSD 220	Mount Morris	Ogle	UNIT	MEDIUM	78	School	MIDDLE SCHL	239	82.8	17
470712200262006	Oregon Elem Sch	Oregon CUSD 220	Oregon	Ogle	UNIT	MEDIUM	$\begin{array}{r} \text { PK K } 1 \\ 2345 \\ 6 \end{array}$	School	ELEMENTARY	806	83.4	1 1

In []: import seaborn as sns

```
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
# Prepare for Linear regression
lr = LinearRegression()
```

```
for school in schools:
    display( school )
    # Create list to hold war outputs
    wars = []
    # Create comparison df for schools of the same type
    comparison_df = df[ df['School Type'] == df.loc[ school ]['School Type'] ]
    # Display correlation matrix for this school type's outcomes
    display( "Correlation matrix" )
    display( comparison_df[ predictors + outcomes ].corr()[ outcomes ] )
    graph = True
    if graph:
        # Create figure and axes
        fig, axs = plt.subplots(nrows=len(predictors)+1, ncols=len(outcomes), figsize=(20, 60))
        fig.tight_layout(pad=10)
    # Loop over outcomes
    for outcome in outcomes:
        # Loop over predictors
        for predictor in predictors:
            # Create comparison df for schools of the same type
            # Drop schools that do not have a value for this predictor or outcome
            comparison_df = df[ df['School Type'] == df.loc[ school ]['School Type'] ].dropna(subset=[predicto
r, outcome])
            if graph:
                # Plot predictor against outcome
                    sns.regplot(x=predictor, y=outcome, data=comparison_df, ax=axs[predictors.index(predictor), ou
tcomes.index(outcome)], scatter_kws={"color": "gray"})
        # Add title and axis labels
        axs[predictors.index(predictor), outcomes.index(outcome)].set_title(f'{school[1]}\n{predictor}
vs {outcome}')
                axs[predictors.index(predictor), outcomes.index(outcome)].set_ylim(0,100)
                # Identify target school in the graph
                axs[predictors.index(predictor), outcomes.index(outcome)].scatter(df.loc[school][predictor], d
f.loc[school][outcome], color = 'red')
    # Create comparison df for schools of the same type
    # Drop schools that do not have a value for this outcome
    comparison_df = df[ df['School Type'] == df.loc[ school ]['School Type'] ].dropna(subset=[outcome])[ p
redictors + [outcome] ]
    # Fill predictors with 0 because a lack of value usually means not enough to form a subgroup
    comparison_df[predictors] = comparison_df[predictors].fillna(0)
    # Fit the model for this outcome
    lr.fit( comparison_df[predictors], comparison_df[outcome] )
    # Compute a predicted value for this outcome
    comparison_df[ outcome + '_predicted' ] = lr.predict( comparison_df[predictors] )
    if graph:
    # Plot predictor against outcome
    sns.regplot(x=outcome + '_predicted', y=outcome, data=comparison_df, ax=axs[len(predictors), outco
mes.index(outcome)], scatter_kws={"color": "gray"})
    axs[len(predictors), outcomes.index(outcome)].set_title(f'{school[1]}\nPredicted {outcome} vs {out
come}')
    axs[len(predictors), outcomes.index(outcome)].set_ylim(0,100)
    # Identify target school in the graph
    axs[len(predictors), outcomes.index(outcome)].scatter(comparison_df.loc[school][outcome + '_predic
ted'], comparison_df.loc[school][outcome], color = 'red')
    # Filter df to schools within 20% of target school's size
    comparison_df = comparison_df[ (abs(comparison_df['# Student Enrollment'] - comparison_df.loc[school][
'# Student Enrollment']) / comparison_df.loc[school]['# Student Enrollment'] < .2 ) ]
```

```
    # Filter df to schools within 10% of target school's Low Income %
    comparison_df = comparison_df[ (abs(comparison_df['% Student Enrollment - Low Income'] - comparison_df
.loc[school]['% Student Enrollment - Low Income']) < 10 ) ]
    for predictor in predictors:
    # Standardize each predictor
    comparison_df[ 'z_' + predictor ] = (comparison_df[ predictor ] - comparison_df[ predictor ].mean
()) / comparison_df[ predictor ].std()
    # Compute a predictor difference between each school and the target school
    comparison_df[ 'zdiff_' + predictor ] = abs( comparison_df['z_' + predictor] - comparison_df.loc[s
chool]['z_' + predictor] )
    # Compute a sum of the predictor differences
    comparison_df['diff'] = comparison_df[ list(filter(lambda x: x.startswith('zdiff'), comparison_df.colu
mns)) ].apply(lambda x: x.sum(), axis=1)
    # Compute a difference score between each school's outcome and the target school's outcome
    comparison_df[ outcome + '_diff' ] = comparison_df[ outcome ] - comparison_df.loc[school][outcome]
    # Sort df by difference between school's predictors and target school's predictors and filter to close
st
    comparison_df = comparison_df.sort_values(by=['diff']).head(20)
    # Filter to schools where outcome was higher than target school
    comparison_df = comparison_df[ comparison_df[ outcome + '_diff' ] >= 0 ]
    # Sort df by difference between school's outcome and target school's outcome
    comparison_df = comparison_df.sort_values(by=[outcome + '_diff'], ascending=False)
    # Append this styled df to wars
    wars.append( {"outcome": outcome, "df": comparison_df[ list(filter(lambda x: not x.startswith('z'), co
mparison_df.columns)) ].style.background_gradient(cmap=sns.light_palette("green", as_cmap=True), subset=[outco
me + '_diff'])} )
    if graph:
    # Output figure
    display( fig )
    fig.clear()
    # Loop over war outputs
    for war in wars:
    display( "WAR " + war['outcome'] )
    display( war['df'] )
plt.close()
```

'Oregon CUSD 220',
'Oregon',
'Ogle',
'UNIT',
'MEDIUM',
' 91011 12')
'Correlation matrix'

	\% ELA Proficiency	\% Math Proficiency
\# Student Enrollment	0.412478	0.441141
\% Student Enrollment - Low Income	-0.714123	-0.681943
\% Student Enrollment - White	0.080113	0.038444
\% Student Enrollment - Children with Disabilities	-0.243426	-0.185472
\% Student Enrollment - EL	-0.609504	-0.561648
\% Student Enrollment - Homeless	-0.416838	-0.418511
Student Attendance Rate	0.469981	0.418484
\% Instructional Expenditure per Pupil	0.114382	0.185015
\% ELA Proficiency	1.000000	0.931025
\% Math Proficiency	0.931025	1.000000

'WAR \% ELA Proficiency'
$\left.\begin{array}{rrrrrrrrrrr}\text { \% Student }\end{array} \begin{array}{c}\text { \% Student } \\ \text { Enrollment } \\ \text { - White }\end{array}\right)$

								\# Student Enrollment	\% Student Enrollment - Low	\% Student Enrollment - White	
RCDTS	School Name	District	City	County	District Type	District Size	Grades Served				
090270100260001	Paxton-Buckley-Loda High School	Paxton-Buckley-Loda CUD 10	Paxton	Ford	UNIT	MEDIUM	$\begin{array}{r} 91011 \\ 12 \end{array}$	418	39.500000	88.500000	
130140030260006	Wesclin Sr High School	Wesclin CUSD 3	Trenton	Clinton	UNIT	MEDIUM	$\begin{array}{r} 91011 \\ \quad 12 \end{array}$	385	31.400000	88.800000	
330482020260001	Knoxville Sr High School	Knoxville CUSD 202	Knoxville	Knox	UNIT	MEDIUM	$\begin{array}{r} 91011 \\ \quad 12 \end{array}$	330	35.800000	94.200000	
350501600170001	Seneca High School	Seneca Twp HSD 160	Seneca	La Salle	$\begin{array}{r} \text { HIGH } \\ \text { SCHOOL } \end{array}$	SMALL	$\begin{array}{r} 91011 \\ 12 \end{array}$	398	34.900000	88.400000	
080083080260001	Eastland $\mathrm{Jr} / \mathrm{Sr}$ High School	Eastland CUSD 308	Lanark	Carroll	UNIT	MEDIUM	$\begin{array}{r} 6789 \\ 1011 \\ 12 \end{array}$	339	38.100000	89.100000	
531020110260001	El PasoGridley High School	El PasoGridley CUSD 11	El Paso	Woodford	UNIT	MEDIUM	$\begin{array}{r} 91011 \\ \quad 12 \end{array}$	359	35.400000	89.100000	
470712210260004	Forreston $\mathrm{Jr} / \mathrm{Sr}$ High Sch	Forrestville Valley CUSD 221	Forreston	Ogle	UNIT	MEDIUM	$\begin{array}{r} 6789 \\ 1011 \\ \quad 12 \end{array}$	416	29.100000	88.000000	
400560060260001	Staunton High School	Staunton CUSD 6	Staunton	Macoupin	UNIT	MEDIUM	$\begin{array}{r} 91011 \\ \\ 12 \end{array}$	380	37.400000	94.500000	
400560090260001	Southwestern High School	Southwestern CUSD 9	Piasa	Macoupin	UNIT	MEDIUM	$\begin{array}{r} 91011 \\ \quad 12 \end{array}$	410	36.600000	95.600000	
470712200260001	Oregon High School	$\begin{array}{r} \text { Oregon CUSD } \\ 220 \end{array}$	Oregon	Ogle	UNIT	MEDIUM	$\begin{array}{r} 91011 \\ \quad 12 \end{array}$	406	37.400000	84.700000	

('470712200261001'
'David L Rahn Jr High School',
'Oregon CUSD 220',
'Mount Morris',
'Ogle',
'UNIT',
'MEDIUM',
' 7 8')
'Correlation matrix'
\% ELA Proficiency \% Math Proficiency

\# Student Enrollment	0.045522	0.174456
\% Student Enrollment - Low Income	-0.716625	-0.767648
\% Student Enrollment - White	0.286602	0.172951
\% Student Enrollment - Children with Disabilities	-0.091563	-0.037429
\% Student Enrollment - EL	-0.468358	-0.436017
\% Student Enrollment - Homeless	-0.156475	-0.265780
Student Attendance Rate	0.396819	0.382702
\% ELA Proficiency	0.150870	0.286428
\% Math Proficiency	1.000000	0.871286
\$ Instructional Expenditure per Pupil	0.871286	1.000000

David L Rahn Jr High School

David L Rahn Jr High School

'WAR \% ELA Proficiency'

[^0]| RCDTS | School Name | District | City | County | District Type | District Size | Grades Served | \# Student Enrollment | \% Student Enrollment - Low Income | \% Student Enrollment - White |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | |
| 090270100261002 | Paxton-Buckley-Loda Jr High Sch | Paxton-Buckley-Loda CUD 10 | Paxton | Ford | UNIT | MEDIUM | 678 | 277 | 46.900000 | 86.300000 |
| 56099209U261002 | Wilmington Middle School | Wilmington CUSD 209U | Wilmington | Will | UNIT | MEDIUM | 678 | 278 | 34.500000 | 84.200000 |
| 090270050261003 | GCMS Middle School | Gibson City-Melvin-Sibley CUSD 5 | Gibson City | Ford | UNIT | MEDIUM | 678 | 208 | 41.800000 | 89.900000 |
| 010050010261002 | Brown
 County
 Middle
 School | Brown County CUSD 1 | Mount Sterling | Brown | UNIT | MEDIUM | 5678 | 207 | 50.200000 | 93.700000 |
| 160194250261001 | Indian Creek Middle School | Indian Creek CUSD 425 | Waterman | Dekalb | UNIT | MEDIUM | 5678 | 208 | 39.400000 | 82.200000 |
| 400560090261002 | Southwestern Middle School | Southwestern CUSD 9 | Piasa | Macoupin | UNIT | MEDIUM | 78 | 211 | 43.100000 | 95.300000 |
| 470980060261001 | Morrison Jr High School | Morrison CUSD 6 | Morrison | Whiteside | UNIT | MEDIUM | 678 | 218 | 40.800000 | 86.200000 |
| 56099255U261001 | Reed-Custer Middle School | Reed Custer CUSD 255U | Braidwood | Will | UNIT | MEDIUM | 678 | 279 | 38.700000 | 87.500000 |
| 390550150261001 | Meridian Middle School | Meridian CUSD 15 | Macon | Macon | UNIT | MEDIUM | 678 | 246 | 39.000000 | 94.700000 |
| 531020060261003 | Fieldcrest Middle School | Fieldcrest CUSD 6 | Wenona | Woodford | UNIT | MEDIUM | 678 | 196 | 48.500000 | 89.800000 |
| 470712200261001 | David L Rahn Jr High School | $\begin{array}{r} \text { Oregon CUSD } \\ 220 \end{array}$ | Mount Morris | Ogle | UNIT | MEDIUM | 78 | 239 | 43.500000 | 82.800000 |

```
('470712200262006',
```

'Oregon Elem Sch',
'Oregon CUSD 220',
'Oregon',
'Ogle',
'UNIT',
'MEDIUM',
'PK K 12345 6')
'Correlation matrix'

	\% ELA Proficiency	\% Math Proficiency
\# Student Enrollment	0.048934	0.057267
\% Student Enrollment - Low Income	-0.776767	-0.803804
\% Student Enrollment - White	0.411163	0.391927
\% Student Enrollment - Children with Disabilities	-0.141821	-0.139105
\% Student Enrollment - EL	-0.475038	-0.460999
\% Student Enrollment - Homeless	-0.165733	-0.186713
Student Attendance Rate	0.551610	0.533635
\$ Instructional Expenditure per Pupil	-0.094966	-0.070392
\% ELA Proficiency	1.000000	0.908093
\% Math Proficiency	0.908093	1.000000

'WAR \% ELA Proficiency'

								\# Student Enrollment	\% Student Enrollment - Low	\% Stude Enrollme - Whi
RCDTS	School Name	District	City	County	District Type	District Size	Grades Served			
150162990252510	Pritzker Elem School	$\begin{array}{r} \text { City of } \\ \text { Chicago } \\ \text { SD } 299 \end{array}$	Chicago	Cook	UNIT	LARGE	$\begin{array}{r} \text { PK K } 1 \\ 2345 \\ 678 \end{array}$	723	33.900000	30.6000
$24032060 C 042001$	Saratoga Elem School	Saratoga CCSD 60C	Morris	Grundy	ELEMENTARY	MEDIUM	$\begin{array}{r} \text { PK K } 1 \\ 2345 \\ 678 \end{array}$	744	34.700000	73.0000 (
211000050262001	Tri-C Elementary School	Carterville CUSD 5	Carterville	Williamson	UNIT	LARGE	K123	647	43.300000	83.2000 (
190220410022003	Churchill Elem School	Glen Ellyn SD 41	Glen Ellyn	Dupage	ELEMENTARY	LARGE	$\begin{array}{r} K 123 \\ 45 \end{array}$	686	44.800000	39.8000
150162990252119	Canty Elem School	City of Chicago SD 299	Chicago	Cook	UNIT	LARGE	$\begin{array}{r} \text { PK K } 1 \\ 2345 \\ 678 \end{array}$	766	52.900000	50.0000 (
150162990252413	Pulaski Intl Sch of Chicago	City of Chicago SD 299	Chicago	Cook	UNIT	LARGE	$\begin{array}{r} \text { PK K } 1 \\ 2345 \\ 678 \end{array}$	881	47.900000	27.6000 (
150162990252214	Garvy J Elem School	City of Chicago SD 299	Chicago	Cook	UNIT	LARGE	$\begin{array}{r} \mathrm{K} 123 \\ 4567 \\ \quad 8 \end{array}$	777	36.200000	52.8000 (
56099030 C 042006	Orenic Intermediate School	Troy CCSD 30C	Plainfield	Will	ELEMENTARY	LARGE	56	884	43.600000	48.0000 (
150162990252358	Inter- American Elem Magnet School	City of Chicago SD 299	Chicago	Cook	UNIT	LARGE	$\begin{array}{r} \text { PK K } 1 \\ 2345 \\ 678 \end{array}$	697	46.100000	11.3000 (
050160150042008	Lincoln Elementary School	Palatine CCSD 15	Palatine	Cook	ELEMENTARY	LARGE	$\begin{array}{r} K 123 \\ 456 \end{array}$	650	42.300000	41.8000 (
190220020022006	Tioga Elementary School	Bensenville SD 2	Bensenville	Dupage	ELEMENTARY	LARGE	$\begin{aligned} & \text { PK K } 1 \\ & 2345 \end{aligned}$	735	47.100000	20.5000 (
470712200262006	Oregon Elem Sch	Oregon CUSD 220	Oregon	Ogle	UNIT	MEDIUM	$\begin{array}{r} \text { PK K } 1 \\ 2345 \\ 6 \end{array}$	806	43.700000	83.4000 (

'WAR \% Math Proficiency'

								\# Student Enrollment	\% Student Enrollment - Low	\% Stu Enrollr - V
RCDTS	School Name	District	City	County	District Type	District Size	Grades Served			
150162990252510	Pritzker Elem School	$\begin{array}{r} \text { City of } \\ \text { Chicago SD } \\ 299 \end{array}$	Chicago	Cook	UNIT	LARGE	$\begin{array}{r} \text { PK K } 1 \\ 2345 \\ 678 \end{array}$	723	33.900000	30.601
24032060C042001	Saratoga Elem School	Saratoga CCSD 60C	Morris	Grundy	ELEMENTARY	MEDIUM	$\begin{array}{r} \text { PK K } 1 \\ 2345 \\ 678 \end{array}$	744	34.700000	73.001
150162990252413	Pulaski Intl Sch of Chicago	City of Chicago SD 299	Chicago	Cook	UNIT	LARGE	$\begin{array}{r} \text { PK K } 1 \\ 2345 \\ 678 \end{array}$	881	47.900000	27.601
050160150042008	Lincoln Elementary School	Palatine CCSD 15	Palatine	Cook	ELEMENTARY	LARGE	$\begin{array}{r} \mathrm{K} 123 \\ 456 \end{array}$	650	42.300000	41.80
190220410022003	Churchill Elem School	Glen Ellyn SD 41	Glen Ellyn	Dupage	ELEMENTARY	LARGE	$\begin{array}{r} \mathrm{K} 123 \\ 45 \end{array}$	686	44.800000	39.801
150162990252119	Canty Elem School	City of Chicago SD 299	Chicago	Cook	UNIT	LARGE	$\begin{array}{r} \text { PK K } 1 \\ 2345 \\ 678 \end{array}$	766	52.900000	50.001
211000050262001	Tri-C Elementary School	Carterville CUSD 5	Carterville	Williamson	UNIT	LARGE	K123	647	43.300000	83.201
150162990252214	Garvy J Elem School	City of Chicago SD 299	Chicago	Cook	UNIT	LARGE	$\begin{array}{r} K 123 \\ 4567 \\ 8 \end{array}$	777	36.200000	52.801
320460530022005	Liberty Intermediate School	Bourbonnais SD 53	Bourbonnais	Kankakee	ELEMENTARY	LARGE	456	714	41.300000	66.701
150162990252380	Ogden Elem School	City of Chicago SD 299	Chicago	Cook	UNIT	LARGE	$\begin{gathered} \text { PK K } 1 \\ 2345 \end{gathered}$	944	43.000000	27.201
470712200262006	Oregon Elem Sch	Oregon CUSD 220	Oregon	Ogle	UNIT	MEDIUM	$\begin{array}{r} \text { PK K } 1 \\ 2345 \\ 6 \end{array}$	806	43.700000	83.401

<Figure size 1440x4320 with 0 Axes>
<Figure size 1440×4320 with 0 Axes>

[^0]: 'WAR \% Math Proficiency'

